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The following is a geometric demonstration of Proposition XI in Book I of Newton’s Principia
Mathematica—mnamely, that planets orbiting the Sun according to Kepler’s laws must be subject
to an acceleration inversely proportional to the square of their respective distances from the Sun.

It is not, however, Newton’s own demonstration. I wanted to try to figure out a geometric demon-
stration on my own, without first reading Newton’s or anyone else’s, and after struggling with it
off and on for several months, I was able to come up with one. I use a diagram that is strikingly
similar to one in the Principia (down to the same similar triangles), but the argument, it turns out,
is not really all that similar.

My demonstration (I hesitate to call it a proof, because I don’t think it is quite rigorous enough)
is in three parts, of which the first is the longest and most involved. It shows that a single planet
in an elliptical orbit around the Sun in accordance with the law of areas is subject to a constantly
varying acceleration, which always obeys the inverse square law.

The second part shows that all orbits with the same semi-major axis have the same proportionality
constant in the inverse square law, thus tying all such orbits together—most notably circular orbits.
Finally, the third part shows that all circular orbits that obey Kepler’s third law must also share
the same proportionality constant, thereby binding all orbits around the Sun to the same inverse
square law.

In showing this relationship, I make implicit use (as Newton did himself) of his first two laws of
motion, but not the third. If one does apply the third law, we find that not only are the planets
subject to an acceleration toward the Sun, but because planets have mass, the Sun is in turn subject
to an acceleration toward each of them—a fact that was of great conceptual importance and which
is used today as the chief method of finding planets around other stars.
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In the diagram above, the Sun is at .S, the empty focus is at R, and the planet moves, in unit time,
along the arc OPQ with OP = PQ. Knowing that the tangent of a small angle is approximately
equal to the angle, and by considering similar triangles, we see that m/PRQ = (SP/RP)m/PSQ.



Bisect /RPS with PT. Drop perpendiculars from R and S to PT at U and V, respectively.
Also extend the bisector of /RQ@S to intersect PT at C. The planet’s orbit is perpendicular to
CP at P, and to CQ at @Q; hence, CP is the orbit’s radius of curvature. Note that m/PCQ =
(m/PRQ +m/PSQ)/2, and our above discussion gives us

RP + SP

m/PCQ = S RP

m/PSQ

Again using the small-angle approximation and similar triangles, we write
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By Kepler’s second law, as the planet moves along the arc OPQ), it changes its velocity so that
it sweeps out equal areas in equal times. Since M is the midpoint of the segment O(Q), the areas
of AOSM and AMS(Q are equal, and hence the areas of the wedges OSN and NSQ very nearly
equal. (To first order, they differ only by the small wedge PM N.) Therefore, the planet takes just
as long to sweep from O to N as it does from N to (), and the acceleration on the planet goes as
MN.

For small arcs OPQ, MQ? = MO - MQ = MP(CM + CP) = MP(2CP), and then
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By similar triangles,
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From our determination of C P, we get
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Again by Kepler’s second law, m/PSQ goes as 1/SP?. MQ is very nearly (SP/VP)SPm/PSQ,
so M@ goes as 1/V P. Since RP + SP is fixed, MN goes as 1/(VP?- RP - SP), or as



1/SP? 1/SP?

RP(VP/SP)- VP UP-VP

RS is constant, hence so is RS?. By the law of cosines,

RS? = RP?> 4 SP? —2RP - SPcos /RPS
= RP?>+ SP?> —2RP-SP(2cos? /VPS — 1)
= RP?*+2RP-SP + SP?> -~ 4RP-SPcos®> /VPS
= (RP + SP)* — 4(RP cos /UPR)(SP cos /V PS)
= (RP+SP)*> —4UP-VP

Again, since RP + SP is fixed, UP - V P must also be constant. Hence, the acceleration M N must
go as 1/SP2—that is, inversely as the square of the distance SP of the planet from the Sun.
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Now, suppose the center of the ellipse to be located at E, the Sun at S, the perihelion at A, and
one end of the minor axis at I, as shown above. Then draw a circular orbit centered at S, with
radius equal to FA. The radius of curvature of the ellipse at A is to that of the circle at B as FI?
is to EA2.

Once again by Kepler’s second law, the velocity of a planet at A in the elliptical orbit is to that of
the one at B in the circular orbit as ET is to SA, and thus the velocity squared as EI? is to SA2.
Combining these results, the acceleration of the planet at A in the elliptical orbit is to that of the
one at B in the circular orbit as FA? or SB? is to SA?, or equivalently as 1/SA? is to 1/SB%—that
is, inversely as the square of their distances from the Sun.

Finally, suppose two planets to travel in circular orbits, centered on S, whose radii are as a? is to
1. Then by Kepler’s third law, their periods are as a® is to 1, and thus their velocities as 1 is to
a. Hence, their accelerations are as 1/a? is to a?, or equivalently as 1/a* is to 1—that is, again,
inversely as the square of their distances from the Sun.



